On a question of Ambos-Spies and Kučera

نویسندگان

  • Bjørn Kjos-Hanssen
  • André Nies
  • Frank Stephan
چکیده

Let A be a subset of the nonnegative integers ω (a real). A Martin-Löf test (relative to A) is a recursive (in A) set U ⊆ ω× 2 such that μUn ≤ 2−n, where Un denotes the nth section of U . If in addition μUn = 2−n then U is called a Schnorr test (relative to A). Then ∩nUn is called a Martin-Löf null set (relative to A) or Schnorr null set (relative to A), respectively. A is Schnorr random if for each Schnorr test there is an n such that A ∈ Un, and Martin-Löf random if for each Martin-Löf test there is an n such that A ∈ Un. A is S0-low if every Schnorr null set relative to A is a Schnorr null set. A is S-low if every Schnorr random set is also Schnorr random relative to A. Terwijn and Zambella [TZ01] gave a recursion-theoretic characterization of the reals that are S0-low. Ambos-Spies and Kučera (Open Problem 4.5, [ASK00]) asked whether every real which is S-low is in fact already S0-low. We give an affirmative answer to this question.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Klaus Ambos - Spies , Steffen Lempp

We show that the two nondistributive ve-element lattices, M 5 and N 5 , can be embedded into the r.e. degrees preserving the greatest element.

متن کامل

Lattice Embeddings into the R . E . Degrees Preserving 0 and 1

We show that a nite distributive lattice can be embedded into the r.e. degrees preserving least and greatest element i the lattice contains a join-irreducible noncappable element.

متن کامل

Lowness for the Class of Schnorr Random Reals

We answer a question of Ambos-Spies and Kučera in the affirmative. They asked whether, when a real is low for Schnorr randomness, it is already low for Schnorr tests.

متن کامل

Lattice Embeddings into the R . E . Degrees Preserving 0 and 1 Klaus Ambos - Spies

We show that a finite distributive lattice can be embedded into the r.e. degrees preserving least and greatest element if and only if the lattice contains a join-irreducible noncappable element.

متن کامل

On the Universal Splitting Property

We prove that if an incomplete computably enumerable set has the the universal splitting property then it is low 2. This solves a question from Ambos-Spies and Fejer 1] and Downey and Stob 7]. Some technical improvements are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003